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Program and Policy Evaluation

O Policy makers and practitioners are often interested in
the effect of a program or policy on student outcomes

o Difficult to examine in the absence of randomization to
treatment and control groups

O Quasi-experimental designs can be used to statistically

mimic randomization (Cook, Campbell, & Shadish, 2002)
o0 With specific assumptions

O Internal validity

O External validity
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The Gold Standard Randomized
Controlled Trial (RCT)

O Randomize students to participate in the treatment or
receive no treatment (control)

O In this design, each student has a 50% chance to be in
the treatment group
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The Gold Standard RCT

o
o

o0 When sample sizes are large, confounders should be
balanced across groups (testable)

O Power analysis can help to determine sample size

O RCT measures the causal effect of a treatment on an
outcome (the gold standard)

O High internal validity, external validity varies
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Limitations of the RCT

o Difficult to implement in the “real world”
O Costly

O Time-consuming

O Sometimes randomization is not feasible
O Sometimes randomization is unethical
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The Real World

O Local, state, and federal agencies are often using
observational (correlational) data

O Observations are collected on the same individuals
over time

O E.g., each school year, each fiscal year, each semester

O No randomization to treatment and control groups

O However, the interest in evaluating the causal effect of
a program or policy remains...
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The Problem: Confounders

Confounders
[X]

Treatment
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Propensity Score Methods

O Modern causal inference techniques can be used to

account for the absence of random assignment (Schafer
& Kang, 2008).

O Propensity Score Methods

O Propensity score is the conditional probability of experiencing the
“treatment” given individual’s values on confounders (Rosenbaum &
Rubin, 1983).

O The propensity score estimates the probability to participate in the
“treatment”.

O Range 0-1; higher = greater likelihood to participate in the
“treatment”

O Improves the ability to make causal inferences about
program participation in the absence of randomization
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Propensity Score Weighting

O Treatment and control groups are not simple random
samples from the population
O Treatment group has an oversampling of people with
high propensities
O Control group has an oversampling of people with low
propensities
O Inverse probability of treatment weighting (IPTW) can
provide an unbiased effect estimate for the population
(with assumptions):
o0 Down-weight oversampled cases
O Up-weight under-sampled cases
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Calculating Weights

Observed Treatment = 1 Observed Treatment = 0
(Treatment group) (Control group)

ow =1/p(x) ow;=1/1-p(x)

o If p(x)=.75 O p(x)=.75

ow = 1/.75=1.33 ow = 1/1-.75=1/.25=4
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Inverse Probability of Treatment

Weighting (IPTW)

Boxplot for Propensity
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Propensity Score Matching

O Treatment and control groups are not equivalent due
to confounding variables

O Matching individuals in the treatment group to
individuals in the control group based on propensity
score can provide a causal estimate (with assumptions)

O Estimate propensity score

O Match students within a certain range of propensity
score (e.g., caliper =0.2)

O Run outcome analyses with matched sample
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Propensity Score Matching
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Treatment Group Control Group

Propensity Score
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A Real World Example from the MLDS
Center

O What is the MLDS Center?

O Independent unit of State government

o0 Purpose generate timely and accurate information about
student performance that can be used to improve the
State’s education system and guide decision makers at all
levels

o The MLDS Center partners with the University of
Maryland to conduct advanced statistical analyses and
policy evaluation to provide actionable information for
policy and practice
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The MLDS Data
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Maryland’s Dual Enrollment Report
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Dual Enrollment in Maryland

Figure 1. Total Number of Dually Enrolled Students 2014-2015 by Grade
Level
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Source: Henneberger, Cohen, Shipe, & Shaw, 2016
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Characteristics of Dually Enrolled

Students

Figure 5. Gender of Dually Enrolled 12* Grade Students (2014-2015)
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Figure 7. Race of Dually Enrolled 12t Grade Students (2014-2015)
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Figure 6. Eligibility for Free and Reduced Price Meals (FARMs) Status for
Dually Enrolled 12t Grade Students (2014-2015)
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Source: Henneberger, Cohen, Shipe, & Shaw, 2016
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Research Question and Motivation

O Motivating Research Question:

0 What is the effect of dual enrollment program
participation in high school on college enrollment
outcome, degree attainment, and earnings?

o Effectimplies a causal design where dual enrollment

causesa change in outcomes.

O Ideal design = randomization to dual enroliment
program and control (Cook, Campbell, & Shadish, 2002)

O But.... Our data are correlational.
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The Problem: Confounders

Gender
Race/Ethnicity
Poverty
Achievement
Attendance

Confounders

Treatment

Confounders make it hard to know whether any

relationship found is due to the treatment itself or due
to confounding variables.




MLDS CENTER

Maryland Longitudinal Data System

4
L
7

Example of the Problem: Academic
Achievement

Academic
Achievement

Dual
Enrollment

Is the relationship between dual enrollment and wages

due to dual enrollment itself or due to academic
achievement (selection bias)?




Pl
The Solution: Propensity Score
Methods

Gender
Race/Ethnicity
Poverty
Achievement
Attendance

Confounders

Dual
Enrollment

What is the of dual enrollment program

participation on workforce wages?
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Method: Study Sample

o Student identified as dually enrolled if:

o Overlapping enrollment dates in MD public high school
and MD college

O Population for 2009-2010 cohort:
O 63,000 12t grade students (2009-2010)
0 4,200 were dually enrolled

o0 Outcomes: college enrollment, degree completion,
wages 6 years after high school graduation
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Method: Confounders

Confounders Predicting Dual Enrollment Program Participation (0/1)

Demographic Variables: Gender, Race, Ethnicity

Program Participation: Eligibility for Free and Reduced Price Meals (FARMS),
Special Education, Homelessness

Academic Indicators: High School Assessment (HSA ) Algebra, English, Biology
(Presence of score * score), Number of Advanced Placement (AP) tests taken
(by subject), 3.0 GPA indicator, Weeks Absent

Distance of high school to nearest 2-year college

Local School System: to account for differences between school systems that
may make studentsin some local school systems more likely to dually enroll
(e.g., course offerings, incentives, district agreements with community
colleges)

Matching implementedin R; nearest neighbor match; 1:1; Caliper = 0.2
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Method: Analyses
0YYOh &|O0 phd

AT T= Average treatment on the treated

D = Treatment status

X = Vector of covariates

(Rosenbaum & Rubin, 1983)

28




"~ MLDS CENTER

=

Maryland Longitudinal Data System

Method: Assumptions

o Unconfoundednes€onditional on propensity score
(and thus covariates), assignment to treatment is
independent of outcomes.

(Ohd) UOsd ®
o Overlap:The probability of being treated is bounded
away from O or 1.
m 0 p
o No unmeasured confounders
O YYOh ®»|O phd

(Rosenbaum & Rubin, 1983)
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Method: Overlap

Examining Region of Common Support
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Method: Balance on Confounders
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Results: College Enrollment and
Degree

Causal Effects of Dual Enroliment: 2010 Cohort
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Results: Wages 6 Years after High

School
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Causal Effect of Dual Enrollment on Wages: 2010
Cohort
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Results: Heterogeneity of Effects

Heterogeneous Effects of Dual Enrollment on Initial 4-Year College Enrollment
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Limitations

O Propensity score methods assume no unmeasured
confounders—

0 Academic motivation
O Behavioral problems
O Etc.

O The MLDS data do not offer the granularity needed to
provide more nuanced comparisons of types of dual
enrollment program participation and outcomes (e.g.,
characteristics of district partnership; Early Middle
College program).

35




MLDS CENTER

Maryland Longitudinal Data System

Strengths

o The ability to draw causal conclusions about the effect of
dual enrollment participation is improved through using
propensity score matching.

O This approach gave us the ability to efficiently control for >25
confounding variables.

o No assumption that confounders are linearly related to
predictor and multicollinearity between confounders is not a
factor.

O Ability to examine diagnostics (balance and overlap/common
support) to ensure the method worked.

O Propensity score matching is a powerful statistical tool that
helps to answer research questions about the effect of a
policy, practice, or progranon outcomes in the absence of
randomization.
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Resources on Causal Inference

o0 Cook, T. D., Campbell, D. T., & Shadish, W.
(2002). Experimental and quasxperimental designs
for generalized causal inferen@»ston: Houghton
Mifflin.

O Rosenbaum, P. R., & Rubin, D. B. (1983). The central
role of the propensity score in observational studies
for causal effects. Biometrika 70 41-55.

o Schafer, J. L., & Kang, J. (2008). Average causal effects
from nonrandomized studies: A practical guide and
simulated example. Psychological Methods, 1379-
313.
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Thank you!

Contact :
Angela K. Henneberger, Ph.D.

Principal Investigator and Research Director
MLDS Center

Angela.henneberger@maryland.gov

Acknowledgements: Thanks to Heath Witzen and Alison
Preston, co-authors on this project.
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